3D Reconstruction of ArgoNeuT straightline tracks in LArSoft

M. Antonello & O. Palamara LNGS

3D Geometrical Reconstruction

- 1) Geometrical 3D Reconstruction with Analytical approach
- 2) Hit by Hit Geometrical 3D Reconstruction
 In future could be re-used also on non-straightline clusters

1) Geometrical 3D Reconstruction with Analytical approach

The final reconstructed object is a 3D line (recob::Track) that can be expressed through the parametric form:

$$\begin{cases} x = x_0 + ta \ y = y_0 + tb \ z = z_0 + tc \end{cases}$$
 Direction Cosines

1) Analytical Approach: Procedure

- Get Clusters (recob::Cluster)
- Perform simple line fit over the hits of each cluster and extract the geometrical 2D track parameters (slope, intercept, end-points). Create one 2D track for each cluster.
- Extract, for each View, the 2D vertex (if any) through the 2D tracks intersection.
- Compute the coordinate of the vertex 3D (recob::Hit) from the 2 2D vertices.
- Match 2D tracks between the 2 different views (Collection and Induction); two tracks are matched if their end-points are close in time and have "compatible" wire numbers
- Compute the direction cosines, θ , ϕ , Δx of the 3D track combining the geometrical parameters of the 2 matched tracks.
- Create the 3D track (recob::Track) with origin in the 3D vertex.
- Display the track with its end-points

Strict Geometrical condition

Tolerance Parameter: tmatch (time sample) now using 22 sample < ---- > 0.7 cm

track

2) Hit by Hit Geometrical 3D Reconstruction (I)

- Get a couple of 2D tracks (from ind. and coll.)
 that have been already matched
- Match their hits. Two hits (Coll and Ind) are matched when they are close in time and when their relative distance from the respective 2D vertex is the same
- Create one 3D Hit for each couple of 2D Hits
- Display the 3D Hits collection

2) Hit by Hit Geometrical 3D Reconstruction (II)

- Algorithm Tested on muon events

 refinement possible (work in progress)
- Algorithm adjustment to reconstruct neutrino events

 just started

- Next step: start from HoughTransform output
 - → this could improve the results.

Run 628 Event 1374: crossing muon

Run 628 Event 1374: crossing muon

Hit by Hit Reconstruction

$$\vartheta = 104^{\circ}; \ \phi = 93^{\circ};$$

Track Length = 95 cm;

Induction Plane Wire

Run 628 Event 1586: crossing muon

Hit by Hit Reconstruction

$$\vartheta$$
 = 100°; ϕ = 91°;
Track Length = 93 cm;

120

Collection Plane Wire

BEAM DIRECTION

220

Run 628 Event 1920: crossing muon

Hit by Hit Reconstruction

$$\vartheta$$
 = 116°; ϕ = 90°;
Track Length = 79 cm;

Details of the implementation in LArSoft

- Code Commitment will be done in few days
- New package "TrackFinder" created
- New Module "SimpleTracker" created (one external parameter → tolerance for time matching)
- Recob::Track and recob::Hit reconstructed objects are displayed in the evd::VolumeView display

Job Control: Simpletracker.xml

Module Configuration simpletrackerModule.xml

```
<job name="simpletrackerJob">
    <node module="caldata::CalWire" config="default" ana="0" reco="1"/>
    <node module="hit::FFTHitFinder" config="default" ana="0" reco="1"/>
    <node module="cluster::DBcluster" config="default" ana="0" reco="1"/>
    <node module="trkfinder::SimpleTracker" config="default" ana="0" reco="1"/>
    </job>
```

input

output

Algorithm Parameter

Next Steps for Reconstruction

- Matching with MINOS muon reconstruction (of interest for ArgoNeuT Analysis but also as validation)
- Calorimetric reconstruction
- Particle ID